Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 19 de 19
Filter
1.
China Journal of Chinese Materia Medica ; (24): 2810-2819, 2023.
Article in Chinese | WPRIM | ID: wpr-981384

ABSTRACT

Via network pharmacology, molecular docking, and cellular experiment, this study explored and validated the potential molecular mechanism of ginsenoside Rg_1(Rg_1) against radiation enteritis. Targets of Rg_1 and radiation enteritis were retrieved from BATMAN-TCM, SwissTargetPrediction, and GeneCards. Cytoscape 3.7.2 and STRING were employed for the construction of protein-protein interaction(PPI) network for the common targets, and screening of core targets. DAVID was used for Gene Ontology(GO) term and Kyoto Encyclopedia of Genes and Genomes(KEGG) pathway enrichment to predict the possible mechanism, followed by molecular docking of Rg_1 with core targets and cellular experiment. For the cellular experiment, ~(60)Co-γ irradiation was performed for mo-deling of IEC-6 cells, which were then treated with Rg_1, protein kinase B(AKT) inhibitor LY294002, and other drugs to verify the effect and mechanism of Rg_1. The results showed that 29 potential targets of Rg_1, 4 941 disease targets, and 25 common targets were screened out. According to the PPI network, the core targets were AKT1, vascular endothelial growth factor A(VEGFA), heat shock protein 90 alpha family class A member 1(HSP90AA1), Bcl-2-like protein 1(BCL2L1), estrogen receptor 1(ESR1), etc. The common targets were mainly involved in the GO terms such as positive regulation of RNA polymerase Ⅱ promoter transcription, signal transduction, positive regulation of cell proliferation, and other biological processes. The top 10 KEGG pathways included phosphoinositide 3-kinase(PI3K)/AKT pathway, RAS pathway, mitogen-activated protein kinase(MAPK) pathway, Ras-proximate-1(RAP1) pathway, and calcium pathway, etc. Molecular docking showed that Rg_1 had high binding affinity to AKT1, VEGFA, HSP90AA1, and other core targets. Cellular experiment indicated that Rg_1 can effectively improve cell viability and survival, decrease apoptosis after irradiation, promote the expression of AKT1 and B-cell lymphoma-extra large(BCL-XL), and inhibit the expression of the pro-apoptotic protein Bcl-2-associated X protein(BAX). In conclusion, through network pharmacology, molecular docking, and cellular experiment, this study verified the ability of Rg_1 to reduce radiation enteritis injury. The mechanism was that it regulated PI3K/AKT pathway, thereby suppressing apoptosis.


Subject(s)
Humans , Proto-Oncogene Proteins c-akt/genetics , Network Pharmacology , Ginsenosides/pharmacology , Phosphatidylinositol 3-Kinases/genetics , Vascular Endothelial Growth Factor A , Molecular Docking Simulation , Radiation Injuries , Drugs, Chinese Herbal/pharmacology
2.
China Journal of Chinese Materia Medica ; (24): 3246-3254, 2023.
Article in Chinese | WPRIM | ID: wpr-981461

ABSTRACT

As one of the main diseases leading to end-stage renal disease, steroid-resistant nephrotic syndrome(SRNS) can cause serious complications such as infection. Without effective control, this disease can further lead to the malignant development of the renal function, bringing serious social and economic burdens. As previously reported, the formation of SRNS is mostly related to the podocyte injury in the body, i.e., the injury of glomerular visceral epithelial cells. Phosphatidylinositol 3-kinase(PI3K)/protein kinase B(Akt) signaling pathway, nuclear transcription factor-κB(NF-κB) signaling pathway, mammalian target of rapamycin(mTOR)/adenosine monophosphate(AMP)-activated protein kinase(AMPK), transforming growth factor(TGF)-β1/Smads, and other signaling pathways are classical signaling pathways related to podocyte injury. By regulating the expression of signaling pathways, podocyte injury can be intervened to improve the adhesion between podocyte foot processes and glomerular basement membrane and promote the function of podocytes, thereby alleviating the clinical symptoms of SRNS. Through the literature review, traditional Chinese medicine(TCM) has unique advantages and an important role in intervening in podocyte injury. In the intervention in podocyte injury, TCM, by virtue of multi-target and multi-pathway role, can regulate and intervene in podocyte injury in many ways, alleviate the clinical symptoms of SRNS, and interfere with the progress of SRNS, reflecting the unique advantages of TCM. On the other hand, TCM can directly or indirectly inhibit podocyte injury by regulating the above signaling pathways, which can not only promote the effect of hormones and immunosuppressants and shorten the course of treatment, but also reduce the toxic and side effects caused by various hormones and immunosuppressants to exert the advantages of small side effects and low price of TCM. This article reviewed TCM in the treatment of SRNS by interfering with podocyte injury-related signaling pathways and is expected to provide a reference for the in-depth study of TCM in the treatment of SRNS, as well as a theoretical basis and a new direction for the clinical application of TCM to shorten the course of treatment of SRNS and delay the progression to end-stage renal disease.


Subject(s)
Humans , Podocytes , Nephrotic Syndrome/genetics , Medicine, Chinese Traditional , Phosphatidylinositol 3-Kinases/genetics , Signal Transduction , NF-kappa B , AMP-Activated Protein Kinases , Hormones
3.
China Journal of Chinese Materia Medica ; (24): 3032-3038, 2023.
Article in Chinese | WPRIM | ID: wpr-981433

ABSTRACT

This study aimed to investigate the anti-fatigue effect and mechanism of Lubian(Cervi Penis et Testis) on kidney Yin deficiency and kidney Yang deficiency mice. After one week of adaptive feeding, 88 healthy male Kunming mice were randomly divided into a blank group, a kidney Yin deficiency model group, a kidney Yin deficiency-Panacis Quinquefolii Radix(PQR) group, kidney Yin deficiency-Lubian treatment groups, a kidney Yang deficiency model group, a kidney Yang deficiency-Ginseng Radix et Rhizoma(GR) group, and kidney Yang deficiency-Lubian treatment groups, with eight mice in each group. The kidney Yin deficiency model and kidney Yang deficiency model were prepared by daily regular oral administration of dexamethasone acetate and hydrocortisone, respectively, and meanwhile, corresponding drugs were provided. The mice in the blank group received blank reagent. The treatment lasted 14 days. The exhaustive swimming time was measured 30 min after drug administration on the 14th day. On the 15th day, blood was collected from eyeballs and the serum was separated to determine the content of lactic acid(LD), blood urea nitrogen(BUN), lactate dehydrogenase(LDH), cyclic adenosine monophosphate(cAMP), and cyclic guanosine monophosphate(cGMP). The liver was dissected to determine the content of liver glycogen and the protein expression of phosphoinositide 3-kinase(PI3K) and protein kinase B(Akt). Compared with the kidney Yang deficiency model group, the kidney Yang deficiency-Lubian treatment groups showed increased body weight(P<0.05), relieved symptoms of Yang deficiency, decreased cGMP content(P<0.01), increased cAMP/cGMP(P<0.01), prolonged exhausted swimming time(P<0.01), reduced LD(P<0.01), elevated BUN content(P<0.01), increased liver glycogen content(P<0.01), and increased protein expression of PI3K and Akt in the liver(P<0.05). Compared with the kidney Yin deficiency model group, the kidney Yin deficiency-Lubian treatment groups showed increased body weight(P<0.01), relieved symptoms of Yin deficiency, increased content of cGMP(P<0.01), decreased cAMP/cGMP(P<0.01), prolonged exhausted swimming time(P<0.01), decreased LD(P<0.01), decreased BUN content(P<0.01), increased liver glycogen content(P<0.01), and increased protein expression of PI3K(P<0.05) and Akt in the liver(P<0.05). To sum up, Lubian can regulate Yin deficiency and Yang deficiency and increase glycogen synthesis by affecting the PI3K-Akt pathway, thereby exerting an anti-fatigue role.


Subject(s)
Male , Mice , Animals , Phosphatidylinositol 3-Kinases/genetics , Proto-Oncogene Proteins c-akt/genetics , Liver Glycogen , Yang Deficiency/drug therapy , Yin Deficiency/drug therapy , Kidney , Body Weight
4.
China Journal of Chinese Materia Medica ; (24): 3014-3021, 2023.
Article in Chinese | WPRIM | ID: wpr-981431

ABSTRACT

Recent studies have shown that the occurrence and development of common liver diseases, including non-alcoholic fatty liver disease, cirrhosis, and liver cancer, are related to liver aging(LA). Therefore, to explore the effect and mechanism of Dahuang Zhechong Pills(DHZCP), a traditional classic prescription in improving LA with multiple targets, the present study randomly divided 24 rats into a normal group, a model group, a DHZCP group, and a vitamin E(VE) group, with six rats in each group. The LA model was induced by continuous intraperitoneal injection of D-galactose(D-gal) in rats. For the LA model rats, the general situation was evaluated by aging phenotype and body weight(BW). LA was assessed by the pathological characteristics of hepatocyte senescence, hepatic function indexes, the staining characteristics of phosphorylated histone family 2A variant(γ-H2AX), and the expression levels of cell cycle arrest proteins(P21, P53, P16) and senescence-associated secretory phenotype(SASP) in the liver. The activation of the reactive oxygen species(ROS)-mediated phosphatidylinositol-3 kinase(PI3K)/protein kinase B(Akt)/forkhead box protein O4(FoxO4) signaling pathway was estimated by hepatic ROS expression feature and the protein expression levels of the key signaling molecules in the PI3K/Akt/FoxO4 signaling pathway. The results showed that after the treatment with DHZCP or VE for 12 weeks, for the DHZCP and VE groups, the characterized aging phenotype, BW, pathological characteristics of hepatocyte senescence, hepatic function indexes, relative expression of ROS in the liver, protein expression levels of key signaling molecules including p-PI3K, p-Akt, and FoxO4 in the liver, staining characteristics of γ-H2AX, and the protein expression levels of P16, P21, P53, interleukin-6(IL-6), and tumor necrosis factor-α(TNF-α) in the liver were improved, and the effects of DHZCP and VE were similar. Based on the D-gal-induced LA model in rats, this study demonstrates that DHZCP can ameliorate LA with multiple targets in vivo, and its effects and mechanism are related to regulating the activation of the ROS-mediated PI3K/Akt/FoxO4 signaling pathway in the liver. These findings are expected to provide new pharmacological evidence for the treatment of DHZCP in aging-related liver diseases.


Subject(s)
Animals , Rats , Proto-Oncogene Proteins c-akt/genetics , Phosphatidylinositol 3-Kinases/genetics , Reactive Oxygen Species , Tumor Suppressor Protein p53/genetics , Signal Transduction , Liver , Aging , Cell Cycle Proteins , Interleukin-6
5.
China Journal of Chinese Materia Medica ; (24): 1620-1631, 2023.
Article in Chinese | WPRIM | ID: wpr-970634

ABSTRACT

The study identified the blood-entering components of Sijunzi Decoction after gavage administration in rats by UPLC-Q-TOF-MS/MS, and investigated the mechanism of Sijunzi Decoction in treating Alzheimer's disease by virtue of network pharmacology, molecular docking, and experimental verification. The blood-entering components of Sijunzi Decoction were identified based on the mass spectra and data from literature and databases. The potential targets of the above-mentioned blood-entering components in the treatment of Alzheimer's disease were searched against PharmMapper, OMIM, DisGeNET, GeneCards, and TTD. Next, STRING was employed to establish a protein-protein interaction(PPI) network. DAVID was used to perform the Gene Ontology(GO) annotation and the Kyoto Encyclopedia of Genes and Genomes(KEGG) pathway enrichment. Cytoscape 3.9.0 was used to carry out visual analysis. AutoDock Vina and PyMOL were used for molecular docking of the blood-entering components with the potential targets. Finally, the phosphatidylinositol 3-kinase(PI3K)/protein kinase B(Akt) signaling pathway enriched by the KEGG analysis was selected for validation by animal experiments. The results showed that 17 blood-entering components were detected in the serum samples after administration. Among them, poricoic acid B, liquiritigenin, atractylenolide Ⅱ, atractylenolide Ⅲ, ginsenoside Rb_1, and glycyrrhizic acid were the key components of Sijunzi Decoction in treating Alzheimer's disease. HSP90AA1, PPARA, SRC, AR, and ESR1 were the main targets for Sijunzi Decoction to treat Alzheimer's disease. Molecular docking showed that the components bound well with the targets. Therefore, we hypothesized that the mechanism of Sijunzi Decoction in treating Alzheimer's disease may be associated with the PI3K/Akt, cancer treatment, and mitogen-activated protein kinase(MAPK) signaling pathways. The results of animal experiments showed that Sijunzi Decoction significantly attenuated the neuronal damage in the hippocampal dentate gyrus area, increased the neurons, and raised the ratios of p-Akt/Akt and p-PI3K/PI3K in the hippocampus of mice. In conclusion, Sijunzi Decoction may treat Alzheimer's disease by activating the PI3K/Akt signaling pathway. The findings of this study provide a reference for further studies about the mechanism of action and clinical application of Sijunzi Decoction.


Subject(s)
Animals , Mice , Rats , Proto-Oncogene Proteins c-akt , Network Pharmacology , Alzheimer Disease/drug therapy , Molecular Docking Simulation , Phosphatidylinositol 3-Kinases/genetics , Tandem Mass Spectrometry , Drugs, Chinese Herbal/pharmacology
6.
Journal of Forensic Medicine ; (6): 443-451, 2022.
Article in English | WPRIM | ID: wpr-984134

ABSTRACT

OBJECTIVES@#To explore the differential expression of messenger RNA (mRNA) in myocardial tissues of rats with sudden coronary death (SCD), and to provide ideas for the forensic identification of SCD.@*METHODS@#The rat SCD model was established, and the transcriptome sequencing was performed by next-generation sequencing technology. Differentially expressed genes (DEGs) in myocardial tissues of SCD rats were screened by using the R package limma. A protein-protein interaction (PPI) network was constructed by using the STRING database and Cytoscape 3.8.2 on DEG, and hub genes were screened based on cytoHubba plug-in. Finally, the R package clusterProfiler was used to analyze the biological function and signal pathway enrichment of the selected DEG.@*RESULTS@#A total of 177 DEGs were associated with SCD and were mainly involved in the renin-angiotensin system and PI3K-Akt signaling pathway. The genes including angiotensinogen (AGT), complement component 4a (C4a), Fos proto-oncogene (FOS) and others played key roles in the development of SCD.@*CONCLUSIONS@#Genes such as AGT, C4a, FOS and other genes are expected to be potential biomarkers for forensic identification of SCD. The study based on mRNA expression profile can provide a reference for forensic identification of SCD.


Subject(s)
Rats , Animals , RNA, Messenger/genetics , Gene Regulatory Networks , Gene Expression Profiling , Phosphatidylinositol 3-Kinases/genetics , Biomarkers
7.
Chinese Journal of Pathology ; (12): 319-325, 2022.
Article in Chinese | WPRIM | ID: wpr-935533

ABSTRACT

Objective: To investigate the clinicopathological features of pediatric diffuse midline glioma with H3K27 alteration and to analyze their relationship with prognosis. Methods: Forty-one cases of childhood diffuse midline glioma with H3K27 alteration were collected at Children's Hospital of Fudan University (39 cases) and Xi'an Children's Hospital (2 cases), from July 2016 to July 2020. The clinical manifestations, imaging data, histopathology, immunohistochemical phenotype and molecular genetics features, tumor size, site and histological grading were evaluated. Results: Among the 41 cases, 21 were males and 20 females, the age of onset was 3-14 years, the average and median age was 7.6 years and 7.0 years, respectively. The tumor sites were brain stem (n=36) and other locations (n=5). The clinical manifestations were dizziness, gait disturbance, and limb weakness, etc. The MRI features were variable. The histology varied from low-grade to high-grade glioma with neuron differentiation. Immunohistochemistry showed that the tumor cells expressed H3K27M, GFAP, and Olig2. Genetic study showed that 76% (16/21) of tumors had H3F3A gene mutation, mostly accompanied by TP53 (62%, 13/21) missense mutation; five tumors (24%, 5/21) had HIST1H3B gene mutation, accompanied by missense mutations in ACVR1 and PI3K pathway-related gene PIK3CA (4/5) and PIK3R1 (1/5) mutations. The prognosis was dismal with only one alive and others died. The average and median overall survival time was 7 months and 4 months, respectively. Cox multivariate regression analysis showed that age, tumor location, radiologically maximum tumor diameter, histologic grading, and surgical methods were not significantly associated with overall survival rate (P>0.05). Conclusions: Pediatric diffuse midline gliomas with H3K27 alteration have unique clinicopathological and genetic characteristics. The prognosis is poor. The tumor location and histopathologic grading are not related to prognosis. New specific drugs and comprehensive treatment are needed to improve the prognosis.


Subject(s)
Adolescent , Child , Child, Preschool , Female , Humans , Male , Brain Neoplasms/genetics , Glioma/pathology , Histones/genetics , Phosphatidylinositol 3-Kinases/genetics , Prognosis
8.
Chinese Journal of Schistosomiasis Control ; (6): 277-285, 2022.
Article in Chinese | WPRIM | ID: wpr-940948

ABSTRACT

OBJECTIVE@#To investigate the serum microRNA (miRNA) expression and examine the impact of miRNA expression profiles on T helper type 17 (Th17)/regulatory T cells (Treg) imbalance among patients with cystic echinococcosis, so as to provide insights into the illustration of the mechanisms underlying chronic Echinococcus granulosus infections, and long-term pathogenesis.@*METHODS@#Total RNA was extracted from the sera of cystic echinococcosis patients and healthy controls, and subjected to high-throughput sequencing with the Illumina sequencing platform. Known miRNAs were annotated and new miRNAs were predicted using the miRBase database and the miRDeep2 tool, and differentially expressed miRNAs were identified. The target genes of differentially expressed miRNAs were predicted using the software miRanda and TargetScan, and the intersection was selected for Gene Ontology (GO) enrichment analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis. Among the differentially expressed miRNAs with the 20 highest fold changes, miRNAs that targeted genes relating to key transcription factors RORC and FOXP3 that determine the production of Th17 and Treg cells or their important regulatory pathways (PI3K-Akt and mTOR pathways) were matched.@*RESULTS@#A total of 53 differentially expressed miRNAs were screened in sera of cystic echinococcosis patients and healthy controls, including 47 up-regulated miRNAs and 6 down-regulated miRNAs. GO enrichment analysis showed that these differentially expressed miRNA were involved DNA transcription and translation, cell components, cell morphology, neurodevelopment and metabolic decomposition, and KEGG pathway analysis showed that the differentially expressed miRNA were mainly involved in MAPK, PI3K-Akt and mTOR signaling pathways. Among the differentially expressed miRNAs with the 20 highest fold changes, there were 3 miRNAs that had a potential for target regulation of RORC, and 15 miRNAs that had a potential to target the PI3K-Akt and mTOR signaling pathways.@*CONCLUSIONS@#Significant changes are found in serum miRNA expression profiles among patients with E. granulosus infections, and differentially expressed miRNAs may lead to Th17/Treg imbalance through targeting the key transcription factors of Th17/Treg or PI3K-Akt and mTOR pathways, which facilitates the long-term parasitism of E. granulosus in hosts and causes a chronic disease.


Subject(s)
Humans , Echinococcosis/genetics , Gene Expression Profiling , MicroRNAs/metabolism , Phosphatidylinositol 3-Kinases/genetics , Proto-Oncogene Proteins c-akt/genetics , T-Lymphocytes, Regulatory , TOR Serine-Threonine Kinases/genetics , Th17 Cells , Transcription Factors/genetics
9.
Acta Academiae Medicinae Sinicae ; (6): 110-117, 2022.
Article in Chinese | WPRIM | ID: wpr-927853

ABSTRACT

Objective To screen the potential key genes of osteosarcoma by bioinformatics methods and analyze their immune infiltration patterns. Methods The gene expression profiles GSE16088 and GSE12865 associated with osteosarcoma were obtained from the Gene Expression Omnibus(GEO),and the differentially expressed genes(DEGs)related to osteosarcoma were screened by bioinformatics tools.Gene Ontology(GO)annotation,Kyoto Encyclopedia of Genes and Genomes(KEGG)pathway enrichment,and analysis of immune cell infiltration were then carried out for the DEGs.The potential Hub genes of osteosarcoma were identified by protein-protein interaction network,and the expression of Hub genes in osteosarcoma and normal tissue samples was verified via the Cancer Genome Atlas(TCGA). Results A total of 108 DEGs were screened out.GO annotation and KEGG pathway enrichment revealed that the DEGs were mainly involved in integrin binding,extracellular matrix (ECM) structural components,ECM receptor interactions,and phosphatidylinositol 3-kinase/protein kinase B(PI3K/Akt)signaling pathway.Macrophages were the predominant infiltrating immune cells in osteosarcoma.Secreted phosphoprotein 1(SPP1),matrix metallopeptidase 2(MMP2),lysyl oxidase(LOX),collagen type V alpha(II)chain(COL5A2),and melanoma cell adhesion molecule(MCAM)presented differential expression between osteosarcoma and normal tissue samples(all P<0.05). Conclusions SPP1,MMP2,LOX,COL5A2,and MCAM are all up-regulated in osteosarcoma,which may serve as potential biomarkers of osteosarcoma.Macrophages are the key infiltrating immune cells in osteosarcoma,which may provide new perspectives for the treatment of osteosarcoma.


Subject(s)
Humans , Bone Neoplasms/immunology , Computational Biology/methods , Gene Expression Profiling/methods , Osteosarcoma/immunology , Phosphatidylinositol 3-Kinases/genetics , Tumor-Associated Macrophages/immunology
10.
Chinese Journal of Natural Medicines (English Ed.) ; (6): 608-620, 2021.
Article in English | WPRIM | ID: wpr-888789

ABSTRACT

Brucea javanica oil emulsion (BJOE) has been used to treat tumor in China for more than 40 years. However, its components and effectiveness in the treatment of acute lymphocytic leukemia (ALL) and its mechanism of anti-cancer activity remain unknown. In the current study, high-performance liquid chromatography-evaporative light scattering detector (HPLC-ELSD) was used to analyze the components of BJOE. Then, the anti-leukemia effects of BJOE were examined both in vitro and in vivo using ALL Jurkat cells and the p388 mouse leukemia transplant model, respectively. The primary ALL leukemia cells were also used to confirm the anti-leukemia effects of BJOE. The apoptotic-related results indicated that BJOE induced apoptosis in Jurkat cells and were suggestive of intrinsic apoptotic induction. Moreover, BJOE inhibited Akt (protein kinase B) activation and upregulated its downstream targets p53 and FoxO1 (forkhead box gene, group O-1) to initiate apoptosis. The activation of GSK3β was also involved. Our findings demonstrate that BJOE has anti-leukemia effects on ALL cells and can induce apoptosis in Jurkat cells through the phosphoinositide3-kinase (PI3K) /Akt signaling pathway.


Subject(s)
Animals , Humans , Mice , Apoptosis , Brucea/chemistry , Glycogen Synthase Kinase 3 , Jurkat Cells , Phosphatidylinositol 3-Kinases/genetics , Plant Oils/pharmacology , Precursor Cell Lymphoblastic Leukemia-Lymphoma/drug therapy , Proto-Oncogene Proteins c-akt/genetics , Seeds/chemistry , Signal Transduction
11.
Chinese Medical Journal ; (24): 546-554, 2021.
Article in English | WPRIM | ID: wpr-878041

ABSTRACT

BACKGROUND@#Breast cancer (BC) is a common malignancy with highly female incidence. So far the function of notoginsenoside R1 (NGR1), the extract from Panax notoginseng, has not been clearly elucidated in BC.@*METHODS@#Optimal culture concentration and time of NGR1 were investigated by cell counting kit-8 assay. Cell proliferation ability was measured by colony formation assays. Transwell assay was used to detect the effect of NGR1 on cell migration and invasion. The apoptosis rate of cells between each group was measured by TUNEL assay.@*RESULTS@#NGR1 treatment has an inhibitory effect on proliferation, migration, invasion, and angiogenesis and a stimulating effect on cell cycle arrest and apoptosis of Michigan Cancer Foundation-7 (MCF-7) cells. The 50% growth inhibitory concentration for MCF-7 cells at 24 h was 148.9 mmol/L. The proportions of MCF-7 cells arrested in the G0/G1 phase were 36.94±6.78%, 45.06±5.60%, and 59.46±5.60% in the control group, 75, and 150 mmol/L groups, respectively. Furthermore, we revealed that NGR1 treatment attenuates BC progression by targeted downregulating CCND2 and YBX3 genes. Additionally, YBX3 activates phosphatidylinositol 3-phosphate kinase (PI3K)/protein kinase B (Akt) signaling pathway by activating kirsten rat sarcoma viral oncogene, which is an activator of the PI3K/Akt signaling pathway.@*CONCLUSION@#These results suggest that NGR1 can act as an efficacious drug candidate that targets the YBX3/PI3K/Akt axis in patients with BC.


Subject(s)
Animals , Female , Humans , Rats , Apoptosis , Breast Neoplasms/drug therapy , Cell Proliferation , Cyclin D2 , Ginsenosides/therapeutic use , Phosphatidylinositol 3-Kinases/genetics , Proto-Oncogene Proteins c-akt/genetics
12.
China Journal of Chinese Materia Medica ; (24): 6465-6473, 2021.
Article in Chinese | WPRIM | ID: wpr-921806

ABSTRACT

In this study, the molecular mechanism of astragaloside Ⅳ(AS-Ⅳ) in the treatment of Parkinson's disease(PD) was explored based on network pharmacology, and the potential value of AS-Ⅳ in alleviating neuronal injury in PD by activating the PI3 K/AKT signaling pathway was verified through molecular docking and in vitro experiments. Such databases as SwissTargetPrediction, BTMAN-TAM, and GeneCards were used to predict the targets of AS-Ⅳ for the treatment of PD. The Search Tool for the Retrieval of Interacting Genes/Proteins(STRING) was employed to analyze protein-protein interaction(PPI) and construct a PPI network, and the Database for Annotation, Visualization and Integrated Discovery(DAVID) was used for Gene Ontology(GO) term enrichment and Kyoto Encyclopedia of Genes and Genomes(KEGG) pathway enrichment analysis. Based on the results of GO enrichment analysis and KEGG pathway analysis, the PI3 K/AKT signaling pathway was selected for further molecular docking and in vitro experiments in this study. The in vitro cell model of PD was established by MPP~+. The cell viability was measured by MTT assay and effect of AS-Ⅳ on the expression of the PI3 K/AKT signaling pathway-related genes and proteins by real-time polymerase chain reaction(RT-PCR) and Western blot. Network pharmacology revealed totally 122 targets of AS-Ⅳ for the treatment of PD, and GO enrichment analysis yielded 504 GO terms, most of which were biological processes and molecular functions. Totally 20 related signaling pathways were screened out by KEGG pathway analysis, including neuroactive ligand-receptor interaction, PI3 K/AKT signaling pathway, GABAergic synapse, and calcium signaling pathway. Molecular docking demonstrated high affinity of AS-Ⅳ to serine/threonine-protein kinases(AKT1, AKT2), phosphatidylinositol-4,5-bisphosphate 3-kinase catalytic subunit gamma(PIK3 CG), and phosphoinositide-3-kinase, catalytic, alpha polypeptide(PIK3 CA) on the PI3 K/AKT signaling pathway. In vitro experiments showed that AS-Ⅳ could effectively inhibit the decrease of the viability of PC12 induced by MPP~+ and up-regulate the mRNA expression levels of AKT1 and PI3 K as well as the phosphorylation levels of AKT and PI3 K. As an active component of Astragali Radix, AS-Ⅳ acts on PD through multiple targets and pathways. Furthermore, it inhibits neuronal apoptosis and protects neurons by activating the PI3 K/AKT signaling pathway, thereby providing reliable theoretical and experimental supports for the treatment of PD with AS-Ⅳ.


Subject(s)
Animals , Rats , Drugs, Chinese Herbal/pharmacology , Molecular Docking Simulation , Network Pharmacology , PC12 Cells , Phosphatidylinositol 3-Kinases/genetics , Proto-Oncogene Proteins c-akt/genetics , Saponins , Signal Transduction , Triterpenes
13.
Journal of Central South University(Medical Sciences) ; (12): 18-24, 2021.
Article in English | WPRIM | ID: wpr-880617

ABSTRACT

OBJECTIVES@#To investigate the effects of propofol on the proliferation and invasion of glioma U87 cells and to explore the possible anti-tumor mechanisms.@*METHODS@#The glioma U87 cells was divided into a blank group, a positive control group, and the propofol groups (1.00, 2.00 or 5.00 mmol/L). Cell counting kit-8 (CCK-8) was used to detect cell proliferation; Transwell method was used to detect the effect of propofol on invasion and migration of U87 cells; real-time PCR was used to detect the expression of microRNA-134 (miR-134); Western blotting was used to detect the expression levels of reproduction-related protein Ki-67, invasion-related protein metalloproteinase-2 (MMP-2), metalloproteinase-9 (MMP-9) and phosphatidylinositol 3 kinase (PI3K)/protein kinase B (Akt) signaling pathway-related protein.@*RESULTS@#Compared with the blank group, the proliferation, invasion and migration capacity of U87 cells were reduced in the positive control group and the propofol groups after 48 hours (all @*CONCLUSIONS@#Propofol can decrease the proliferation rate, and the invasion and migration abilities of U87 cells, which may be achieved by up-regulation of miR-134 and suppression of PI3K/Akt signaling pathway.


Subject(s)
Humans , Cell Line, Tumor , Cell Movement , Cell Proliferation , Glioma/genetics , Matrix Metalloproteinase 2/genetics , MicroRNAs/genetics , Phosphatidylinositol 3-Kinases/genetics , Propofol/pharmacology , Proto-Oncogene Proteins c-akt/genetics
14.
China Journal of Chinese Materia Medica ; (24): 183-189, 2021.
Article in Chinese | WPRIM | ID: wpr-878928

ABSTRACT

Based on the PI3K/Akt signaling pathway, this study aimed to observe the proliferation and apoptosis of ovarian cancer SKOV3 cells at different concentrations of icaritin, in order to explore the possible molecular mechanisms. The research object was ovarian cancer SKOV3 cells. The cells were divided into the control group and icaritin groups(5, 10, 20 μmol·L~(-1)), and administrated with drugs for 48 hours. The cell counting kit-8(CCK-8)assay was used to detect the inhibitory effect of icaritin on the proliferation of ovarian cancer SKOV3 cells. The proliferation ability of the SKOV3 cells was detected by EdU assay. Hoechst 33342 fluorescence staining was used to observe the apoptotic morphology of SKOV3 cells in each group. The distribution of cell cycle and the apoptosis rate of each group were detected by flow cytometry. Quantitative Real-time PCR was used to detect mRNA expressions of PTEN, PI3K, Akt in each group of cells. Protein expressions of PTEN, PI3K, Akt and p-Akt were measured by Western blot. The results showed that the cell inhibition rates of icaritin groups were significantly increased compared with the control group(P<0.05). The rates of EdU-positive cells of icaritin groups were significantly decreased(P<0.05). SKOV3 cells in icaritin groups showed morphological changes of apoptosis. Apoptosis rates of icaritin groups were significantly increased(P<0.05). The proportions of cells in G_0/G_1 phase of icaritin groups were decreased(P<0.05), while the proportions of S phase cells were increased(P<0.05). The gene and protein expressions of PTEN in icaritin groups were elevated(P<0.05). The gene expressions of PI3K and Akt in icaritin groups were down-regulated(P<0.05). The protein expression of PI3K and p-Akt in icaritin groups were reduced(P<0.05). These results indicated that icarin may inhibit the proliferation of ovarian cancer SKOV3 cells in vitro, induce cell apoptosis and affect the cycle distribution of cells by inhibiting the PI3K/Akt signaling pathway.


Subject(s)
Female , Humans , Apoptosis , Cell Line, Tumor , Cell Proliferation , Flavonoids , Ovarian Neoplasms/genetics , Phosphatidylinositol 3-Kinases/genetics , Proto-Oncogene Proteins c-akt/genetics
15.
Braz. j. med. biol. res ; 53(12): e9740, 2020. tab, graf
Article in English | LILACS, ColecionaSUS | ID: biblio-1132511

ABSTRACT

Breast cancer (BC) is a commonly diagnosed cancer in females. MicroRNA-660-5p (miR-660-5p) has been reported to be involved in the occurrence and development of BC. However, the regulatory network of miR-660-5p in BC has not been fully addressed. Quantitative real-time polymerase chain reaction (qRT-PCR) was performed to detect the enrichment of miR-660-5p and tet-eleven translocation 2 (TET2) in BC tissues and cells. Cell counting kit-8 (CCK8), flow cytometry, and transwell migration and invasion assays were used to measure cell proliferation, apoptosis, migration, and invasion. The target relationship between miR-660-5p and TET2 was confirmed by dual luciferase reporter assay. Protein expression was measured by western blot. The expression of miR-660-5p was elevated in BC, and high expression of miR-660-5p was closely related to lymph node metastasis, advanced TNM stage, and vascular invasion of BC tumors. miR-660-5p silencing inhibited cell proliferation and metastasis, but induced apoptosis of BC cells. TET2 was identified as a direct target of miR-660-5p, and the interference of TET2 partly reversed the suppressive effects of miR-660-5p silencing on the malignant potential of BC cells. miR-660-5p promoted BC progression partly through modulating TET2 and PI3K/AKT/mTOR signaling. miR-660-5p/TET2 axis might be a promising target for BC treatment.


Subject(s)
Humans , Female , Breast Neoplasms/genetics , MicroRNAs/genetics , Signal Transduction , Proto-Oncogene Proteins , Phosphatidylinositol 3-Kinases/genetics , Cell Line, Tumor , DNA-Binding Proteins , Proto-Oncogene Proteins c-akt/genetics , TOR Serine-Threonine Kinases/genetics
16.
Biol. Res ; 51: 52, 2018. tab, graf
Article in English | LILACS | ID: biblio-1011396

ABSTRACT

BACKGROUND: Phosphoinositide-3-kinase, regulatory subunit 1 (PIK3R1) could regulate cancer cell proliferation important for cancer cell proliferation; however, its role in Hepatocellular carcinoma (HCC) remains largely unknown. Here, we investigated the role of PIK3R1 in HCC and examined the underlying molecular mechanisms. METHODS: The expression of PIK3R1 was evaluated by immunohistochemistry and qRT-PCR in a series of HCC tissues. The mRNA and protein expression of PIK3R1 was used by qRT-PCR and western blot assays in a series of human HCC cell lines, and then we choose MHCC97H and HCCLM3 cells as a model to investigate the effect of PIK3R1 on HCC progression. The effects of PIK3R1 knowdown on cell proliferation, migration, apoptosis of HCC were assessed by the MTT assay, clonogenic assays, wound healing assay and flow cytometry in vitro. Western blot assay was performed to assess the expression changes of PI3K/AKT/mTOR signaling pathway. RESULTS: Our results found that PIK3R1 was highly expressed in HCC tissues compared with adjacent normal tissues. Knockdown of PIK3R1 inhibited the proliferation, migration and promoted apoptosis of HCC cell lines. In addition, we proved that knockdown of PIK3R1 downregulated p-PI3K, p-AKT, and p-mTOR expressions in MHCC97H and HCCLM3 cells. CONCLUSIONS: In conclusion, PIK3R1 providing potential novel targets for the treatment of HCC.


Subject(s)
Humans , Gene Expression Regulation, Neoplastic/genetics , Carcinoma, Hepatocellular/genetics , Phosphatidylinositol 3-Kinases/genetics , Liver Neoplasms/genetics , Immunohistochemistry , Blotting, Western , Apoptosis , Carcinoma, Hepatocellular/pathology , Disease Progression , Cell Line, Tumor , Cell Proliferation , Class Ia Phosphatidylinositol 3-Kinase , Real-Time Polymerase Chain Reaction , Liver Neoplasms/pathology
17.
The Korean Journal of Parasitology ; : 371-377, 2015.
Article in English | WPRIM | ID: wpr-50468

ABSTRACT

Trichomonas vaginalis induces proinflammation in cervicovaginal mucosal epithelium. To investigate the signaling pathways in TNF-alpha production in cervical mucosal epithelium after T. vaginalis infection, the phosphorylation of PI3K/AKT and MAPK pathways were evaluated in T. vaginalis-infected SiHa cells in the presence and absence of specific inhibitors. T. vaginalis increased TNF-alpha production in SiHa cells, in a parasite burden-dependent and incubation time-dependent manner. In T. vaginalis-infected SiHa cells, AKT, ERK1/2, p38 MAPK, and JNK were phosphorylated from 1 hr after infection; however, the phosphorylation patterns were different from each other. After pretreatment with inhibitors of the PI3K/AKT and MAPK pathways, TNF-alpha production was significantly decreased compared to the control; however, TNF-alpha reduction patterns were different depending on the type of PI3K/MAPK inhibitors. TNF-alpha production was reduced in a dose-dependent manner by treatment with wortmannin and PD98059, whereas it was increased by SP600125. These data suggested that PI3K/AKT and MAPK signaling pathways are important in regulation of TNF-alpha production in cervical mucosal epithelial SiHa cells. However, activation patterns of each pathway were different from the types of PI3K/MAPK pathways.


Subject(s)
Female , Humans , Cell Line , Cervix Uteri/enzymology , Epithelial Cells/enzymology , MAP Kinase Signaling System , Mucous Membrane/enzymology , Phosphatidylinositol 3-Kinases/genetics , Proto-Oncogene Proteins c-akt/genetics , Trichomonas Vaginitis/enzymology , Trichomonas vaginalis/physiology , Tumor Necrosis Factor-alpha/genetics
18.
Yonsei Medical Journal ; : 883-887, 2013.
Article in English | WPRIM | ID: wpr-99050

ABSTRACT

PURPOSE: Phosphatidylinositol 3-kinases/AKT pathway plays a pivotal role in hepatocellular carcinoma (HCC). Mutant PIK3CA, encoding the p110a catalytic subunit, stimulates the AKT pathway and promotes cell growth in various cancers. PIK3CA mutation rate has been usually reported as low frequency (<5%) in HCC except one report from Korea with 35.6%. Therefore, we investigated the frequency of PIK3CA mutations in Korean HCC patients. MATERIALS AND METHODS: We sequenced exons1, 3, 4, 6, 7, 8, 9, 19 and 20 of PIK3CA in 268 HCC tumor tissue samples by Sanger method and pyrosequencing assay. RESULTS: In this study, the mutations were not detected in exons3, 6, 8, and 19, and detected 1 at unknown SNP in exon1 and exon4, 2 at unknown SNP in exon7, 2 at unknown SNP in exon20. However, 1 at unknown SNP, 1 at G1635T and surprisingly all samples at A1634Cin exon9 were detected by Sanger method. Additional experiments with normal tissue, cloning experiments and a pyrosequencing assay revealed that the double peak at A1634C of exon9 is a pseudogene, not true mutation. The mutations found in this study were all different and small numbers, therefore, we cannot conclude specific relationship between clinical characteristics of HCC and mutation of PIK3CA. CONCLUSION: Our study suggests that the rate of PIK3CA mutation in the Korea population is in fact similar to the rates seen elsewhere in the world.


Subject(s)
Adolescent , Adult , Aged , Female , Humans , Male , Middle Aged , Young Adult , Asian People/genetics , Carcinoma, Hepatocellular/genetics , Exons , Liver Neoplasms/genetics , Mutation , Mutation Rate , Phosphatidylinositol 3-Kinases/genetics , Polymorphism, Single Nucleotide , Republic of Korea
19.
Journal of Veterinary Science ; : 319-323, 2011.
Article in English | WPRIM | ID: wpr-17405

ABSTRACT

Leptin is an adipocytokine that regulates body weight, and maintains energy homeostasis by promoting reduced food intake and increasing energy expenditure. Leptin expression and secretion is regulated by various factors including hormones and fatty acids. Butyrate is a short-chain fatty acid that acts as source of energy in humans. We determined whether this fatty acid can play a role in leptin expression in fully differentiated human adipocytes. Mature differentiated adipocytes were incubated with or without increasing concentrations of butyrate. RNA was extracted and leptin mRNA expression was examined by Northern blot analysis. Moreover, the cells were incubated with regulators that may affect signals which may alter leptin expression and analyzed with Northern blotting. Butyrate stimulated leptin expression, and stimulated mitogen activated protein kinase (MAPK) and phospho-CREB signaling in a time-dependent manner. Prior treatment of the cells with signal transduction inhibitors as pertusis toxin, Gi protein antagonist, PD98059 (a MAPK inhibitor), and wortmannin (a PI3K inhibitor) abolished leptin mRNA expression. These results suggest that butyrate can regulate leptin expression in humans at the transcriptional level. This is accomplished by: 1) Gi protein-coupled receptors specific for short-chain fatty acids, and 2) MAPK and phosphatidylinositol-3-kinase (PI3K) signaling pathways.


Subject(s)
Humans , Adipocytes/metabolism , Azo Compounds , Butyric Acid/pharmacology , CREB-Binding Protein/genetics , Cell Differentiation , Cells, Cultured , Gene Expression Regulation/drug effects , Leptin/genetics , Mitogen-Activated Protein Kinase Kinases/genetics , Phosphatidylinositol 3-Kinases/genetics , RNA, Messenger/genetics , Signal Transduction/physiology , Staining and Labeling
SELECTION OF CITATIONS
SEARCH DETAIL